IV B.Tech - I Semester -Regular / Supplementary Examinations JANUARY - 2022

FINITE ELEMENT METHODS (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Define Discrete system with an example.
b) What do you mean by boundary conditions?
c) Describe the characteristics of shape functions.
d) List various forces acting on a 1D linear Bar element.
e) Distinguish between local coordinate system and global coordinate system.
f) Write down the finite element equation for a beam element.
g) Define Plane stress and Plane Strain conditions.
h) Write down the strain displacement matrix for 4 noded quadrilateral element.
i) What are the thermal boundary conditions for a composite wall?
j) Write down the Stress-Strain relationship matrix for an axi-symmetric triangular element.
k) List some of the software packages available for Finite Element Methods.

PART - B
Answer any THREE questions. All questions carry equal marks.
$3 \times 16=48 \mathrm{M}$
2. Explain the Raleigh - Ritz method of functional approximation with the help of an example in detail.
3. Consider the bar as shown in Figure 1. Determine the nodal displacements, stresses induced in the elements and Reaction forces at the supports.

Figure 1
4. For beam shown in Figure 2, compute the deflection at the element nodes. The modulus of elasticity is $\mathrm{E}=200 \mathrm{GPa}$ and the cross section is as shown in figure. Use the finite element method with minimum number of elements.

Figure 2
5. Derive the element stiffness matrix for a 3 nodded triangular element (CST) and also derive the equivalent nodal force matrix for Traction force and Body force terms.
6. A composite wall consists of 3 materials shown in Figure 3 below. The outer temperature is $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$. Convection heat transfer takes place on the inner surface of the wall with $\mathrm{T}_{\infty}=800^{\circ} \mathrm{C}$ and $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Determine the temperature distribution in the wall.

$$
\begin{aligned}
& \mathrm{K}_{1}=20 \mathrm{~W} / \mathrm{mK} \\
& \mathrm{~K}_{2}=30 \mathrm{~W} / \mathrm{mK} . \\
& \mathrm{K}_{3}=50 \mathrm{~W} / \mathrm{mK} . \\
& h=25 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C} . \\
& T_{\infty}=800^{\circ} \mathrm{C}
\end{aligned}
$$

Figure 3

